

Advanced Photon Source Upgrade Path

Defining the State-of-the-Art

Presented to BESAC Subcommittee on 20-year Facilities Roadmap

February 23, 2003

By J. Murray Gibson

APS Today

HP-CAT (16) ChemMatCARS-CAT (15) IMCA-CAT (17) BioCARS-CAT (14) Bio-CAT (18) GeoSoliEnviroCARS-CAT (13) SBC-CAT (19) BESSRC-CAT (12 PNC-CAT (20) LS-CAT (21) MR-CAT (10) SER-CAT (22) GM/CA-CAT (23) CMC-CAT (9) NE-CAT (24) IMM -CAT (8) Nano-CAT (26) MHATT-CAT (7) U-CAT (6) IXS-CAT (29) DND-CAT (5) XOR (4) XOR (3) Nanoscale XOR (2 SGX-CAT (31) COM-CAT (32) UNI-CAT (33) UNI-CAT (34) only 4 ID beamports PENDING SECTORS (LOCATION TENTATIVE) SECTOR KEY MATERIALS, CHEMICAL, & ATOMIC SCIENCE are not yet **■** GEO, SOIL, & ENVIRONMENTAL SCIENCE committed

38 functioning beamports (25ID, 13BM) 68 total available

APS user community to reach ~10,000 in a decade

State-of-the-Art 3rd Generation Science in 20 Years?

- Individual nanoscale objects can be observed in real-time
- Electronic, dynamic and magnetic properties of a *single* nanostructure can be measured
- A few atoms can be chemically identified
- A full dataset for protein structure analysis can be collected in less than a second
- X-ray imaging of objects with *nm resolution* is routine

History of Innovation

• Top-up operation

- -Low emittance
- -Stable optics
- Improved beam stability

Canted Undulators

- driven by bio users

Guiding principles for next 20 years

- The mission of the Advanced Photon Source is to deliver world-class science and technology by operating an outstanding synchrotron radiation research facility accessible to a broad spectrum of researchers
- Need for 3rd Generation Sources will not go away in 20 years, and our user base will grow to ~10,000
 - 4th generation is revolutionary, but does not supercede 3rd generation
- Our users and staff should be connected with the next generation capabilities
 - short pulses (fs), higher coherence.
- APS capabilities must increase continually
 - over 1000 times improvement in "useable" brilliance possible within 20 years
- Maintain strong partnerships (such as CATs), and open access for general users

Defining the state-of-the-art in 3^{rd} generation x-ray sources and science

APS phases of innovation in the next 20 years

- Phase I Maximizing Beamline Operations
- Phase II Maximizing Source Capabilities
- Phase III Next Generation Facility
- Phase IV Super Storage Ring

 Phases II, III and IV each represent at least an order of magnitude increased useable brilliance

APS Upgrades Timeline

Phase I – Maximizing Beamline Operations (2004-2012)

- 10 beamlines to be constructed in the next 8 years (5 years per beamline)
 - more than 1 beamline possible per beamport
- 10 beamlines to be upgraded
 - most likely BES sectors (~26 beamports)
- Construction
 - APS and partner user responsibility
- Operation
 - APS responsibility

The Importance of the Science

- New capabilities will be optimized (in parallel with optimized sources during Phase II)
- All beamlines will be well operated and accessible
- Quantity and quality of output will increase
- Science Advisory Committee oversees choices

Two kinds of beamlines:

a "turnkey" beamline to efficiently collect - SAXS

a dedicated beamline to "do experiments" magnetic scattering

Beamline operation support leverages science

Average Number of Publications/year/sector vs. On-site Staff*

Readiness for Phase I

- Beginning now but limited by resources
- Capital resources and manpower for operations
 - our current staff level permits insertion device development and some beamline design assistance ~1/3 beamlines
 - operational staff support must grow by ~100 people
 (+20% current operating budget)
- Continuing incremental improvements in detectors, optics will occur during Phase I
- VUV-FEL facility is a special beamline -

APS "LEUTL" FEL beamline

- Allows accelerator physics activities such as gun development for 4th generation
 - demonstrated SASE at ~100nm
 - operates independently in non-top-up mode
- VUV-FEL user facility for ~\$10M

Phase I – Cost, Schedule, Scope and Management

- Estimated cost \$160M over 8 years
 - average 2-3 new beamlines per year, up-front weighting on new beamlines
- Funds for new instruments should be ½ inside, ½ outside facility (for partnering)
 - With research funds outside
- Operational funds should be inside facility (~\$20M extra in today's dollars)
- SAC role, external peer review also on partner proposals

Phase II – Maximizing Source Capabilities (2004-2014)

- Innovative undulators, front ends and related components
- Higher brilliance, optimized for application
- Improve front ends and high-heat load optics for higher current operation
 - APS operates at 100mA, would reach 300mA at end of Phase II
- Increasing brilliance by more than an order of magnitude
- Continuing accelerator improvement
 - even greater improvement beam stability

Science Example - Extended straight section and inelastic x-ray

LONG STRAIGHT SECTION WITH THREE UNDULATORS "A" AND ONE SUPERCONDUCTING UNDULATOR

- The heme doming coordinate in myoglobin is directly involved in the oxygen-binding reaction
- Doming modes are expected in the range of 6-8 meV
- With a high enough resolution it becomes possible to study the influence of addition of ligands to the functional behavior of proteins

Science example - magnetic studies with soft x-rays Brilliance Tuning Curves for Elliptically Polarized Devices

APS (7 GeV, 100 mA):10 m long straight section, $\lambda = 16.0$ cm, N = 62 APS (7 GeV, 100 mA):5 m long straight section, $\lambda = 12.8$ cm, N = 18 (current device) ALS (1.9 GeV, 400 mA): 2 m long straight section, $\lambda = 5.0$ cm, N = 37

Polarization-dependent spectroscopy

Helicity dependent X-ray emission provides information concerning spin polarized density of bulk occupied states

•Magnetic contrast:

- Domain imaging
- Ground states in nanoscale systems
- Interactions in particle arrays
- Finite size effects

Chemical contrast

- Self-assembled systems
- Segregation
- Local electronic structure
- Buried layers (~5 nm)
- Soft x-ray advantages:
 - High magnetic contrast
 - Access to TM, RE, semiconductors

Readiness for Phase II - Current R&D

Superconducting Small Period Undulator

1.45 cm period L=2.4 m, N=165 Gap=7 mm Maximum K = 1.4 1.00 cm period L=2.4 m, N=240 Gap = 3 mm Maximum K = 1.17

Variable Polarization Undulator

Electro-magnetic Device

 $\lambda = 16$ cm, L=10 m, N=62

APPLE type PM Device

 λ =12 cm, L=10 m, N=82

Assumed APS storage ring parameters: 3.5 nm-rad, 1% coupling, 100 mA

Phase II – Cost, Schedule, Scope and Management

- \$100M over 10 years, ramping up from \$5M per year in the first year, to \$20M in the last year
- APS will remain at the state-of-the-art in insertion device design
 - Connection with LCLS and other 4th generation sources

Phase III – Next Generation User Facility (2010-2023)

- By 10 years from now user community will approach 10,000
- APS will be primary 3rd generation hard x-ray source, with great capabilities and easy accessibility
- Need to develop beamlines and automation to reach next level

The Importance of the Science

- Current performance is limited by beamlines – optics, detectors
 - One or two orders of magnitude improvement available in many cases
- Automation offers both remote access, better user support and new experimental capabilities

Detectors and Optics Limit Performance

Map grain orientation and stress in real samples $10^4 \mu m^3$ at $1 \mu m$ resolution takes 54 hours to collect data CCD read-out time = 52 hours

Atomic Resolution Flourescence Holography

Automation

- Not just remote access and user support
- Precision and control exceeds human capabilities

Automation leads to new science

- Nanoprobe
 - Scan real and reciprocal space in nanovolumes
- Adaptive optics with feedback
- Multi-parameter "smart" scans

Readiness for Phase III

• This builds on Phase I and II for a complete reinstrumentation of all beamlines. Incremental developments will be going through Phases I and II. Education and outreach will be facilitated by an Institute for X-Ray Science and Technology, including a theory component.

Phase III – Cost, Schedule, Scope and Management

- Estimated cost for enhancements of beamlines is \$400M
- Funding should include partner users in construction, proposals and SAC oversight
- Center for X-Ray Science and Technology involved, with partner members
- Most construction activities organized by APS, operation remains APS responsibility
- Additional \$45M conventional facilities upgrades will be needed in 20-year period

Phase IV – Super Storage Ring (2012-2020)

- To upgrade user capabilities and maximize value of embedded infrastructure and community
- Reduce emittance by at least a factor of 10
 - Less than 0.3 nm-rad effective emittance
 - Very short lifetime
 - Requires refined top-up and new injector
- Beam stabilization at 10nm level
- Requires new storage ring and injector
 - New injector offers 4th generation capabilities

Super Ring - 80 Sector Lattice

- Flexible lattice, uses existing enclosures
- use existing BM ports
- either
 - two short insertion devices (3 - 4 meters) / double sector
- or
 - one long insertion device (up to 12 meters)
 - plus one hard bending magnet source

2.5 meters

Nano-scale Beam Stabilization

Necessary in conjunction with reduced beam emittance

- Support nanoprobe experiments
- Aggressive attack on
 - noise sources, microhertz to Megahertz
 - improved instrumentation and feedback capability

New Injector Complex

- Several possibilities for injection
 - New booster
 - LINAC source
 - Need high rep rate and emittance x10 smaller than present booster

LINAC Augmented Light Source

- Fast injection, low emittance
- Offers 4th gen.
 - plus new use ofexisting injectors (UV, IR)

APS SASE-FEL	
Sto <u>rage R</u> ing	
PAR	
AP <u>S Lina</u> c	
Booster Synchrotron	
Synchronous	
100 m	t
Undulator Secondary Linac	rimary

PARAMETER	VALUE	UNITS
General		
Total length	600	m
Cryomodules	34	
Energy gain per module	240	MeV
Total beam energy	8.16	GeV
Average gradient	13.6	MV/m
RF system		
Operational frequency	1.3	GHz
Average beam power	800	kW
Beam		
Charge per bunch	1	nC
Bunches per macropulse	1	
Normalized RMS emittance	14	μm
RMS bunch length		
At injector	10	ps
At exit of linac	< 1	ps
Macropulse repetition rate	100	Hz

Table 1: Primary Linac parameters

The Importance of the Science

- Offers a factor of more than 10 improved brilliance to embedded beamline and user base
- Stability will enable higher performance for nanobeams etc.
- New LINAC injector will offer 4th gen. capabilities, e.g. time resolved
 - Secondary LINAC and endstations
 - Existing injector liberated for other uses
- Possible for special operating mode giving fs pulses into storage ring experiments

Readiness for Phase IV

- In approximately 15 years, this would provide a major upgrade in capabilities
 - Unlikely that any other APS scale storage ring will be built in the foreseeable future
- Actual accelerator choices would be mandated by developments in ERL/FEL along the way
 - Could be connected to green-field FEL
 - Leverage leadership for insertion devices

Phase IV – Cost, Schedule, Scope and Management

- Estimated cost of Super Storage Ring
 - \$350M
- Estimated cost of LINAC construction
 - \$250M
- Alternate injector approach to replace booster much less expensive, but does not offer 4th gen. or UV/IR capabilities

How the phases are linked to the impact

- Multiple increases of more than 10x each phase in performance
 - almost 10,000 times increase in useable brilliance in 20 years
- APS will define the state-of-the-art and have a major scientific impact
- Total investment proposed is ~\$1.3B over 20 years, comparable with depreciation cost of APS (operating budget in that period >\$2B)

Conclusion

- Phased upgrade plan maintains APS as premier 3rd generation x-ray storage ring
 - 3rd generation sources will not be obsolete!
- Embedded capabilities and user community in 15 years leads to desire for continually improved and augmented capabilities
 - Connect with 4th-generation capabilities
- Requires increased operating budgets for operational support responsibilities (only ~20% in today's dollars)

Defining the state-of-the-art in 3^{rd} generation x-ray sources and science